iris.nodes.binarization package¶
Submodules¶
iris.nodes.binarization.multilabel_binarization module¶
- class iris.nodes.binarization.multilabel_binarization.MultilabelSegmentationBinarization(eyeball_threshold: float = 0.5, iris_threshold: float = 0.5, pupil_threshold: float = 0.5, eyelashes_threshold: float = 0.5, callbacks: List[Callback] = [])[source]¶
Bases:
Algorithm
Implementation of a binarization algorithm for multilabel segmentation. Algorithm performs thresholding of each prediction’s channel separately to create rasters based on specified by the user classes’ thresholds.
- class Parameters(*, eyeball_threshold: ConstrainedFloatValue, iris_threshold: ConstrainedFloatValue, pupil_threshold: ConstrainedFloatValue, eyelashes_threshold: ConstrainedFloatValue)[source]¶
Bases:
Parameters
Parameters class for MultilabelSegmentationBinarization objects.
- eyeball_threshold: float¶
- eyelashes_threshold: float¶
- iris_threshold: float¶
- pupil_threshold: float¶
- run(segmentation_map: SegmentationMap) Tuple[GeometryMask, NoiseMask] [source]¶
Perform segmentation binarization.
- Parameters:
segmentation_map (SegmentationMap) – Predictions.
- Returns:
Binarized geometry mask and noise mask.
- Return type:
Tuple[GeometryMask, NoiseMask]
iris.nodes.binarization.specular_reflection_detection module¶
- class iris.nodes.binarization.specular_reflection_detection.SpecularReflectionDetection(reflection_threshold: int = 254)[source]¶
Bases:
Algorithm
Apply a threshold to the IR Image to detect specular reflections.
- class Parameters(*, reflection_threshold: ConstrainedIntValue)[source]¶
Bases:
Parameters
Parameter class for FusedSemanticSegmentation class.
- reflection_threshold: int¶