iris.nodes.iris_response package

Subpackages

Submodules

iris.nodes.iris_response.conv_filter_bank module

class iris.nodes.iris_response.conv_filter_bank.ConvFilterBank(iris_code_version: str = 'v0.1', filters: ~typing.List[~iris.nodes.iris_response.image_filters.image_filter_interface.ImageFilter] = [<iris.nodes.iris_response.image_filters.gabor_filters.GaborFilter object>, <iris.nodes.iris_response.image_filters.gabor_filters.GaborFilter object>], probe_schemas: ~typing.List[~iris.nodes.iris_response.probe_schemas.probe_schema_interface.ProbeSchema] = [<iris.nodes.iris_response.probe_schemas.regular_probe_schema.RegularProbeSchema object>, <iris.nodes.iris_response.probe_schemas.regular_probe_schema.RegularProbeSchema object>])[source]

Bases: Algorithm

Apply filter bank.

Algorithm steps:
  1. Obtain filters and corresponding probe schemas.

  2. Apply convolution to a given pair of normalized iris image using the filters and probe schemas.

  3. Generate the iris response and corresponding mask response.

class Parameters(*, filters: List[ImageFilter], probe_schemas: List[ProbeSchema], iris_code_version: str)[source]

Bases: Parameters

Default ConvFilterBank parameters.

filters: List[ImageFilter]
iris_code_version: str
probe_schemas: List[ProbeSchema]
run(normalization_output: NormalizedIris) IrisFilterResponse[source]

Apply filters to a normalized iris image.

Parameters:

normalization_output (NormalizedIris) – Output of the normalization process.

Returns:

filter responses.

Return type:

IrisFilterResponse

iris.nodes.iris_response.conv_filter_bank.polar_img_padding(img: ndarray, p_rows: int, p_cols: int) ndarray[source]

Apply zero-padding vertically and rotate-padding horizontally to a normalized image in polar coordinates.

Parameters:
  • img (np.ndarray) – normalized image in polar coordinates.

  • p_rows (int) – padding size on top and bottom.

  • p_cols (int) – padding size on left and right.

Returns:

padded image.

Return type:

np.ndarray

Module contents