Source code for iris.nodes.matcher.simple_hamming_distance_matcher

from pydantic import confloat, conint

from iris.io.dataclasses import IrisTemplate
from iris.nodes.matcher.hamming_distance_matcher_interface import Matcher
from iris.nodes.matcher.utils import simple_hamming_distance


[docs]class SimpleHammingDistanceMatcher(Matcher): """Simple Hamming distance Matcher without the bells and whistles. Algorithm steps: 1) Calculate counts of nonmatch irisbits (IB_Counts) in common unmasked region and the counts of common maskbits (MB_Counts) in common unmasked region. 2) Calculate Hamming distance (HD) based on IB_Counts and MB_Counts. 3) If parameter `normalise` is True, normalize Hamming distance based on parameter `norm_mean`. 4) If parameter rotation_shift is > 0, repeat the above steps for additional rotations of the iriscode. 5) Return the minimium distance from above calculations. """
[docs] class Parameters(Matcher.Parameters): """SimpleHammingDistanceMatcher parameters.""" rotation_shift: conint(ge=0, strict=True) normalise: bool norm_mean: confloat(ge=0, le=1, strict=True) norm_gradient: float
__parameters_type__ = Parameters def __init__( self, rotation_shift: conint(ge=0, strict=True) = 15, normalise: bool = False, norm_mean: confloat(ge=0, le=1, strict=True) = 0.45, norm_gradient: float = 0.00005, ) -> None: """Assign parameters. Args: rotation_shift (Optional[conint(ge=0, strict=True)], optional): Rotation shifts allowed in matching (in columns). Defaults to 15. normalise (bool, optional): Flag to normalize HD. Defaults to False. norm_mean (Optional[confloat(ge=0, le = 1, strict=True)], optional): Nonmatch distance used for normalized HD. Optional paremeter for normalized HD. Defaults to 0.45. norm_gradient: float, optional): Gradient for linear approximation of normalization term. Defaults to 0.00005. """ super().__init__( rotation_shift=rotation_shift, normalise=normalise, norm_mean=norm_mean, norm_gradient=norm_gradient, )
[docs] def run(self, template_probe: IrisTemplate, template_gallery: IrisTemplate) -> float: """Match iris templates using Hamming distance. Args: template_probe (IrisTemplate): Iris template from probe. template_gallery (IrisTemplate): Iris template from gallery. Returns: float: Matching distance. """ score, _ = simple_hamming_distance( template_probe=template_probe, template_gallery=template_gallery, rotation_shift=self.params.rotation_shift, normalise=self.params.normalise, norm_mean=self.params.norm_mean, norm_gradient=self.params.norm_gradient, ) return score