[docs]classSimpleHammingDistanceMatcher(Matcher):"""Hamming distance Matcher, without the bells and whistles. Algorithm steps: 1) Calculate counts of nonmatch irisbits (IB_Counts) in common unmasked region and the counts of common maskbits (MB_Counts) in common unmasked region. 2) Calculate Hamming distance (HD) based on IB_Counts and MB_Counts. 3) If parameter `normalise` is True, normalize Hamming distance based on parameter `norm_mean` and parameter `norm_nb_bits`. 4) If parameter rotation_shift is > 0, repeat the above steps for additional rotations of the iriscode. 5) Return the minimium distance from above calculations. """
__parameters_type__=Parametersdef__init__(self,rotation_shift:int=15,normalise:bool=False,norm_mean:float=0.45,norm_nb_bits:float=12288,)->None:"""Assign parameters. Args: rotation_shift (int = 15): rotation allowed in matching, converted to columns. Defaults to 15. normalise (bool = False): Flag to normalize HD. Defaults to False. norm_mean (float = 0.45): Peak of the non-match distribution. Defaults to 0.45. norm_nb_bits (float = 12288): Average number of bits visible in 2 randomly sampled iris codes. Defaults to 12288 (3/4 * total_bits_number for the iris code format v0.1). """super().__init__(rotation_shift=rotation_shift,normalise=normalise,norm_mean=norm_mean,norm_nb_bits=norm_nb_bits)
[docs]defrun(self,template_probe:IrisTemplate,template_gallery:IrisTemplate)->float:"""Match iris templates using Hamming distance. Args: template_probe (IrisTemplate): Iris template from probe. template_gallery (IrisTemplate): Iris template from gallery. Returns: float: matching distance. """score,_=simple_hamming_distance(template_probe=template_probe,template_gallery=template_gallery,rotation_shift=self.params.rotation_shift,normalise=self.params.normalise,norm_mean=self.params.norm_mean,norm_nb_bits=self.params.norm_nb_bits,)returnscore